Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Parasit Vectors ; 15(1): 243, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804427

RESUMO

BACKGROUND: Infections by gastrointestinal nematodes cause significant economic losses and disease in both humans and animals worldwide. The discovery of novel anthelmintic drugs is crucial for maintaining control of these parasitic infections. METHODS: For this purpose, the aim of the present study was to evaluate the potential anthelmintic activity of three series of compounds against the gastrointestinal nematodes Trichuris muris and Heligmosomoides polygyrus in vitro. The compounds tested were derivatives of benzimidazole, lipidic aminoalcohols and diamines. A primary screening was performed to select those compounds with an ability to inhibit T. muris L1 motility by > 90% at a single concentration of 100 µM; then, their respective IC50 values were calculated. Those compounds with IC50 < 10 µM were also tested against the adult stage of T. muris and H. polygyrus at a single concentration of 10 µM. RESULTS: Of the 41 initial compounds screened, only compounds AO14, BZ6 and BZ12 had IC50 values < 10 µM on T. muris L1 assay, showing IC50 values of 3.30, 8.89 and 4.17 µM, respectively. However, only two of them displayed activity against the adult stage of the parasites: BZ12 killed 81% of adults of T. muris (IC50 of 8.1 µM) and 53% of H. polygyrus while BZ6 killed 100% of H. polygyrus adults (IC50 of 5.3 µM) but only 17% of T. muris. CONCLUSIONS: BZ6 and BZ12 could be considered as a starting point for the synthesis of further structurally related compounds.


Assuntos
Anti-Helmínticos , Nematoides , Nematospiroides dubius , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Benzimidazóis , Trichuris
2.
Sci Rep ; 12(1): 13004, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906366

RESUMO

The control of gastrointestinal nematodes in livestock is becoming increasingly difficult due to the limited number of available drugs and the rapid development of anthelmintic resistance. Therefore, it is imperative to develop new anthelmintics that are effective against nematodes. Under this context, we tested the potential toxicity of three compounds in mice and their potential anthelmintic efficacy in Mongolian gerbils infected with Haemonchus contortus. The compounds were selected from previous in vitro experiments: two diamine (AAD-1 and AAD-2) and one benzimidazole (2aBZ) derivatives. 2aBZ was also selected to test its efficacy in sheep. In Mongolian gerbils, the benzimidazole reduced the percentage of pre-adults present in the stomach of gerbils by 95% at a dose of 200 mg/kg. In sheep, there was a 99% reduction in the number of eggs shed in faeces after 7 days at a dose of 120 mg/kg and a 95% reduction in the number of worm adults present in the abomasum. In conclusion, 2aBZ could be considered a promising candidate for the treatment of helminth infections in small ruminants.


Assuntos
Anti-Helmínticos , Hemoncose , Haemonchus , Nematoides , Doenças dos Ovinos , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Gerbillinae , Hemoncose/tratamento farmacológico , Hemoncose/veterinária , Camundongos , Ovinos , Doenças dos Ovinos/tratamento farmacológico
3.
Vet Parasitol ; 296: 109496, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34147018

RESUMO

Gastrointestinal nematodes (GIN) infections are a serious problem in livestock production due to the great economic losses they cause. Their control is increasingly difficult because of the rapid development of drug resistance and the limited number of available drugs. Therefore, this study evaluated 18 aminoalcohol and 16 diamine derivatives against eggs, first and third stage larvae from a susceptible and a resistant isolate of Teladorsagia circumcincta collected from sheep. The effectiveness of the in vitro anthelmintic activity of the compounds was evaluated using three different procedures: Egg Hatch Test (EHT), Larval Mortality Test (LMT) and Larval Migration Inhibition Test (LMIT). Those compounds with activities higher than 90 % in the initial screening at 50 µM were selected to determine their half maximal effective concentration (EC50). In parallel, cytotoxicity assays were conducted on Caco2 and HepG2 cell lines to calculate Selectivity Indexes (SI) for each compound. The diamine 30 presented the best results in preventing egg hatching, displaying the lowest EC50 value (1.01 ±â€¯0.04 µM) of all compounds tested and the highest SI (21.21 vs. Caco-2 cells). For the LMIT, the diamine 34 showed the highest efficacy, with EC50 values of 2.67 ±â€¯0.08 and 3.02 ±â€¯0.09 µM on the susceptible and resistant isolate of the parasite, respectively.


Assuntos
Álcoois , Anti-Helmínticos , Diaminas , Nematoides , Doenças dos Ovinos , Álcoois/farmacologia , Álcoois/uso terapêutico , Animais , Anti-Helmínticos/farmacologia , Anti-Helmínticos/uso terapêutico , Células CACO-2 , Diaminas/farmacologia , Diaminas/uso terapêutico , Resistência a Medicamentos/efeitos dos fármacos , Fezes , Humanos , Óvulo/efeitos dos fármacos , Ovinos , Doenças dos Ovinos/tratamento farmacológico
4.
ACS Infect Dis ; 7(8): 2390-2401, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34114790

RESUMO

Leishmaniases are vector-borne neglected diseases caused by single-celled parasites. The search for new antileishmanial drugs has experienced a strong boost thanks to the application of bioimaging to phenotypic screenings based on intracellular amastigotes. Mouse splenic explants infected with fluorescent strains of Leishmania are proven tools of drug discovery, where hits can be easily transferred to preclinical in vivo models. We have developed a two-staged platform for antileishmanial drugs. First, we screened two commercial collections of repurposing drugs with a total of 1769 compounds in ex vivo mouse splenocytes infected with an infrared emitting Leishmania infantum strain. The most active and safest compounds were scaled-up to in vivo models of chronic Leishmania donovani visceral leishmaniasis and Leishmania major cutaneous leishmaniasis. From the total of 1769 compounds, 12 hits with selective indices >35 were identified, and 4 of them were tested in vivo in a model of L. donovani visceral leishmaniasis. Nifuratel, a repurposed synthetic nitrofuran, when administered orally at 50 mg/kg bw once or twice a day for 10 days, caused >80% reduction in the parasitic load. Furthermore, the intralesional administration of nifuratel in a model of cutaneous leishmaniasis by L. major produced the parasitological cure. From the previous results we have deduced the great capacity of mouse splenic explants to identify new hits, a model which could be easily transferred to in vivo models, as well as the potential use of nifuratel as an alternative to the current treatment of cutaneous leishmaniasis.


Assuntos
Leishmania donovani , Leishmaniose Cutânea , Nifuratel , Preparações Farmacêuticas , Animais , Reposicionamento de Medicamentos , Leishmaniose Cutânea/tratamento farmacológico , Camundongos
5.
Mar Drugs ; 18(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244488

RESUMO

Neglected Tropical Diseases (NTD) represent a serious threat to humans, especially for those living in poor or developing countries. Almost one-sixth of the world population is at risk of suffering from these diseases and many thousands die because of NTDs, to which we should add the sanitary, labor and social issues that hinder the economic development of these countries. Protozoan-borne diseases are responsible for more than one million deaths every year. Visceral leishmaniasis, Chagas disease or sleeping sickness are among the most lethal NTDs. Despite not being considered an NTD by the World Health Organization (WHO), malaria must be added to this sinister group. Malaria, caused by the apicomplexan parasite Plasmodium falciparum, is responsible for thousands of deaths each year. The treatment of this disease has been losing effectiveness year after year. Many of the medicines currently in use are obsolete due to their gradual loss of efficacy, their intrinsic toxicity and the emergence of drug resistance or a lack of adherence to treatment. Therefore, there is an urgent and global need for new drugs. Despite this, the scant interest shown by most of the stakeholders involved in the pharmaceutical industry makes our present therapeutic arsenal scarce, and until recently, the search for new drugs has not been seriously addressed. The sources of new drugs for these and other pathologies include natural products, synthetic molecules or repurposing drugs. The most frequent sources of natural products are microorganisms, e.g., bacteria, fungi, yeasts, algae and plants, which are able to synthesize many drugs that are currently in use (e.g. antimicrobials, antitumor, immunosuppressants, etc.). The marine environment is another well-established source of bioactive natural products, with recent applications against parasites, bacteria and other pathogens which affect humans and animals. Drug discovery techniques have rapidly advanced since the beginning of the millennium. The combination of novel techniques that include the genetic modification of pathogens, bioimaging and robotics has given rise to the standardization of High-Performance Screening platforms in the discovery of drugs. These advancements have accelerated the discovery of new chemical entities with antiparasitic effects. This review presents critical updates regarding the use of High-Throughput Screening (HTS) in the discovery of drugs for NTDs transmitted by protozoa, including malaria, and its application in the discovery of new drugs of marine origin.


Assuntos
Antiprotozoários/farmacologia , Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Infecções por Euglenozoa/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico , Animais , Antiprotozoários/uso terapêutico , Produtos Biológicos/uso terapêutico , Descoberta de Drogas , Resistência a Medicamentos , Infecções por Euglenozoa/parasitologia , Ensaios de Triagem em Larga Escala , Humanos , Malária Falciparum/parasitologia , Doenças Negligenciadas/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium malariae/efeitos dos fármacos , Plasmodium malariae/patogenicidade , Trypanosomatina/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...